

Grade 7/8 Math Circles February 19th, 2024 Graph Theory: Isomorphisms - Problem Set

For the first four questions consider the graph G below:

- 1. For the graph G answer the following questions:
 - (a) What is V(G)?
 - (b) What is E(G)?
 - (c) What are the neighbours and degree of each vertex in G?

Solution:

- (a) $V(G) = \{1, 2, 3, 4, 5, 6, 7, a, b, c, d, e, f\}$
- (b) $E(G) = \{\{1, 3\}, \{1, 4\}, \{2, a\}, \{2, d\}, \{3, e\}, \{4, 6\}, \{4, c\}, \{4, e\}, \{5, 6\}, \{5, e\}, \{6, e\}, \{7, d\}, \{a, f\}, \{b, f\}, \{d, f\}\}$

	Vertex	Neighbours of Vertex	Degree of Vertex
ſ	1	3 and 4	2
	2	a and d	2
	3	1 and e	2
	4	1, 6, c and e	4
(c)	5	6 and e	2
	6	4, 5 and e	3
	7	d	1
	a	2 and f	2
	b	f	1
	С	4	1
Ī	d	2, 7 and f	3
	e	3, 4, 5 and 6	4
	f	a, b and d	3

2. Is G isomorphic to the graph H below? If yes provide an isomorphism if not explain why.

Solution: No, G is not isomorphic to H because G has 13 vertices while H only has 11 vertices, thus for any function $f: V(G) \Rightarrow V(H)$ that we build, f will not satisfy Criterion #2 of Graph Isomorphisms, since more than one vertex in G will have to be mapped to the same vertex in Q.

3. Is G isomorphic to the graph Q below? If yes provide an isomorphism if not explain why.

Solution: No, G is not isomorphic to Q because G has 3 vertices of degree 1, while Q only has 1, thus for any function $f: V(G) \Rightarrow V(H)$ that we build, f will not satisfy Criterion #1 of Graph Isomorphisms.

4. Is G isomorphic to the graph P below? If yes provide an isomorphism if not explain why.

Solution: No, G is not isomorphic to Q. Notice that in Q the vertex 8 has degree 5, but no vertex in G has degree greater than 4, thus for any function $f: V(G) \Rightarrow V(H)$ that we build, f will not satisfy Criterion #1 of Graph Isomorphisms.

For the next 4 Questions consider the **isomorphic** graphs G and Q below :

5. Is $f: V(G) \to V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism $\mathbf{2}$ 3 1 4 57 8 9 v6 10 then prove it, if not then explain why: f(v)bdf hj acegi

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1, 2 and 3 from the lesson. We'll first check that if u and v are adjacent vertices in G, then f(u) and f(v) are adjacent in Q. We'll do this by listing out the neighbours for each vertex u in G and seeing if they match up with the neighbours of f(u) in Q:

	u	f(u)	neighbours of u	relabelled neighbours of u	neighbours of $f(u)$	
	1	a	2	b	h	
We ca	an st	top her	e since we've alre	ady found a problem with .	f. we know that $f(1)$	= a,
but fr	om	our cha	art above we see t	hat the vertex 1 in G is a ve	ertex of degree 2 in G	with
neigh	bour	s 3 and	4 but the vertex a	a in Q is a vertex of degree 1	with neighbour h , since	ce the
degre	es ar	nd neig	hbours of 1 and a	do not match up then we h	ave that f has not sat	isfied

6. Is $f: V(G) \to V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism 23 1 4 56 7 8 9 10vthen prove it, if not then explain why: f(v)abС deaghij

Criterion #1 of Graph Isomorphisms, and so f is not an isomorphism.

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1, 2 and 3 from the lesson. Since f(1) = a we know from part a that this already makes f fail Criterion #1 of Graph Isomorphisms. But we can also notice something crucial by

looking at our input-output chart! In the outputs we can see that f(1) = a and f(6) = abut we know that vertex $1 \neq$ vertex 6, thus f fails Criterion #2 of Graph Isomorphisms as well, and so f is not an isomorphism. But there is one last thing we could've noticed by looking at our input-output chart, in the outputs we can see that the vertex f does not show up and so f fails Criterion #3 of Graph Isomorphisms as well. Thus clearly since ffails all of Criteria 1, 2 and 3 from the lesson then f is not an isomorphism.

7. Is $f: V(G) \to V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism 21 3 4 56 78 9 v10 then prove it, if not then explain why: f(v)ahidcb j f eg

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1, 2 and 3 from the lesson. We'll first check that if u and v are adjacent vertices in G, then f(u) and f(v) are adjacent in Q. We'll do this by listing out the neighbours for each vertex u in G and seeing if they match up with the neighbours of f(u) in Q:

u	f(u)	neighbours of u	relabelled neighbours of u	neighbours of $f(u)$
1	a	2	h	h
2	h	6, 8 and 9	b, f, and g	b, f, and g
3	i	6, 7 and 8	b, j and f	b, j and f
4	d	5, 6 and 8	c, b and f	c, b and f
5	c	4	d	d
6	b	2, 3 and 4	h, i and d	h, i and d
7	j	3, 9 and 10	i, g and e	i, g and e
8	f	2, 3 and 4	h, i and d	h, i and d
9	g	2 and 7	h and j	h and j
10	e	4 and 7	d and j	d and j

Now notice the last two columns of the chart above show that if u and v are adjacent vertices in G, then f(u) and f(v) are adjacent in Q since they match up exactly. Thus $f: V(G) \to V(Q)$ fulfills Criterion #1 of Graph Isomorphisms. Now looking at our inputoutput table we can see that each vertex in Q appears exactly once- this immediately tells us that $f: V(G) \to V(Q)$ fulfills Criterion #2 and #3 of Graph Isomorphisms! Therefore f fulfills Criteria 1, 2 and 3 from the lesson and so f is an isomorphism.

8. Is $f: V(G) \to V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism 1 2v3 4 5678 9 10 then prove it, if not then explain why: f(v)b aihdcj ge

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1, 2 and 3 from the lesson. We'll first check that if u and v are adjacent vertices in G, then f(u) and f(v) are adjacent in Q. We'll do this by listing out the neighbours for each vertex u in G and seeing if they match up with the neighbours of f(u) in Q:

u	f(u)	neighbours of u	relabelled neighbours of u	neighbours of $f(u)$
1	b	2	a	h

We can stop here since we've already found a problem with f. we know that f(1) = b and since 2 is the neighbour of 1 in G we need f(2) = a to be a neighbour to f(1) = b in Q, but we know that a and b are not neighbours in Q and so f fail Criterion #1 of Graph Isomorphisms, telling us that f is not an isomorphism.

9. Are the following two graphs G and Q isomorphic? If yes provide an isomorphism, if not then state why.

Solution: Yes, the graphs G and Q are isomorphic! Consider the isomorphism $f: V(G) \to V(Q)$ given in the following input-output table;

u	1	2	3	4	5	6	7
f(u)	e	a	c	b	g	d	f

10. * The following two graphs G and Q not isomorphic. With one change (adding/removing on edge or one vertex) how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

Solution: The change is to add an edge between vertices 1 and 3 in G. Then the function $f: V(G) \to V(Q)$ is an isomorphism, where f is given by: the following input-output table;

u	1	2	3	4	5
f(u)	e	a	b	d	С

11. * The following two graphs G and Q not isomorphic. With one change (adding/removing on edge or one vertex) how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

Solution: The change is to remove vertex 7 from G. Then the function $f: V(G) \to V(Q)$ is an isomorphism, where f is given by: the following input-output table;

u	1	2	3	4	5	6	8
f(u)	a	e	g	С	f	d	b

12. *** Below are the graphs P_2 , P_3 , and P_4 from the family of Polygon Graphs, the polygon graph P_n is simply the regular polygon with n sides (P_3 is a triangle, P_4 is a rectangle, P_5 is a pentagon etc):

- (a) Draw and label the graphs P_5 , P_6 , and P_7 .
- (b) We define the complement of a graph G as \overline{G} to be a graph with the same vertex set as G, but has an edge set in which any edge that is not in G is an edge of \overline{G} . Below are the graphs of \overline{P}_2 , \overline{P}_3 , and \overline{P}_4 . Draw and label the graphs of \overline{P}_5 , \overline{P}_6 , and \overline{P}_7 .

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

- (c) Which of P_2 , P_3 , P_4 , P_5 , P_6 , and P_7 are isomorphic to their complement, state which one(s) are isomorphic and provide and isomorphism.
- (d) Besides the isomorphic graph(s) you found in part c is there any other graph in the Polygon Graph family which will be isomorphic to its complement? Explain your reasoning.

have degree equal to 2, so for P_n to be isomorphic to its complement we require that

all vertices in \overline{P}_n also have degree equal to 2. If all vertices in \overline{P}_n have degree equal to 2 then this means that for a given vertex u in P_n , u is not adjacent to exactly two vertices, and we also know that all vertices in P_n have degree equal to 2 so in P_n there are two vertices adjacent to u, two vertices not adjacent to u and u its self, this tells us that P_n has exactly 5 vertices. Therefore only P_5 is isomorphic to its complement.