Grade 7/8 Math Circles
 February 19th, 2024
 Graph Theory: Isomorphisms - Problem Set

For the first four questions consider the graph G below:

1. For the graph G answer the following questions:
(a) What is $V(G)$?
(b) What is $E(G)$?
(c) What are the neighbours and degree of each vertex in G ?

Solution:
(a) $V(G)=\{1,2,3,4,5,6,7, a, b, c, d, e, f\}$
(b) $E(G)=\{\{1,3\},\{1,4\},\{2, a\},\{2, d\},\{3, e\},\{4,6\},\{4, c\},\{4, e\},\{5,6\},\{5, e\}$, $\{6, e\},\{7, d\},\{a, f\},\{b, f\},\{d, f\}\}$
(c)

Vertex	Neighbours of Vertex	Degree of Vertex
1	3 and 4	2
2	a and d	2
3	1 and e	2
4	$1,6, c$ and e	4
5	6 and e	2
6	4,5 and e	3
7	d	1
a	2 and f	2
b	f	1
c	4	1
d	2,7 and f	3
e	$3,4,5$ and 6	4
f	a, b and d	3

2. Is G isomorphic to the graph H below? If yes provide an isomorphism if not explain why.

Solution: No, G is not isomorphic to H because G has 13 vertices while H only has 11 vertices, thus for any function $f: V(G) \Rightarrow V(H)$ that we build, f will not satisfy Criterion \#2 of Graph Isomorphisms, since more than one vertex in G will have to be mapped to the same vertex in Q.
3. Is G isomorphic to the graph Q below? If yes provide an isomorphism if not explain why.

Solution: No, G is not isomorphic to Q because G has 3 vertices of degree 1, while Q only has 1 , thus for any function $f: V(G) \Rightarrow V(H)$ that we build, f will not satisfy Criterion \#1 of Graph Isomorphisms.
4. Is G isomorphic to the graph P below? If yes provide an isomorphism if not explain why.

Solution: No, G is not isomorphic to Q. Notice that in Q the vertex 8 has degree 5, but no vertex in G has degree greater than 4, thus for any function $f: V(G) \Rightarrow V(H)$ that we build, f will not satisfy Criterion \#1 of Graph Isomorphisms.

For the next 4 Questions consider the isomorphic graphs G and Q below :

5. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why: | v | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(v)$ | a | b | c | d | e | f | g | h | i | j |

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1,2 and 3 from the lesson. We'll first check that if u and v are adjacent vertices in G, then $f(u)$ and $f(v)$ are adjacent in Q. We'll do this by listing out the neighbours for each vertex u in G and seeing if they match up with the neighbours of $f(u)$ in Q :

u	$f(u)$	neighbours of u
relabelled neighbours of u	neighbours of $f(u)$	

1	a	2	b	h

We can stop here since we've already found a problem with f. we know that $f(1)=a$, but from our chart above we see that the vertex 1 in G is a vertex of degree 2 in G with neighbours 3 and 4 but the vertex a in Q is a vertex of degree 1 with neighbour h, since the degrees and neighbours of 1 and a do not match up then we have that f has not satisfied Criterion \#1 of Graph Isomorphisms, and so f is not an isomorphism.
6. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why:

v	1	2	3	4	5	6	7	8	9	10
$f(v)$	a	b	c	d	e	a	g	h	i	j

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1,2 and 3 from the lesson. Since $f(1)=a$ we know from part a that this already makes f fail Criterion \#1 of Graph Isomorphisms. But we can also notice something crucial by
looking at our input-output chart! In the outputs we can see that $f(1)=a$ and $f(6)=a$ but we know that vertex $1 \neq$ vertex 6 , thus f fails Criterion $\# 2$ of Graph Isomorphisms as well, and so f is not an isomorphism. But there is one last thing we could've noticed by looking at our input-output chart, in the outputs we can see that the vertex f does not show up and so f fails Criterion $\# 3$ of Graph Isomorphisms as well. Thus clearly since f fails all of Criteria 1, 2 and 3 from the lesson then f is not an isomorphism.
7. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why:

v	1	2	3	4	5	6	7	8	9	10
$f(v)$	a	h	i	d	c	b	j	f	g	e

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1, 2 and 3 from the lesson. We'll first check that if u and v are adjacent vertices in G, then $f(u)$ and $f(v)$ are adjacent in Q. We'll do this by listing out the neighbours for each vertex u in G and seeing if they match up with the neighbours of $f(u)$ in Q :

u	$f(u)$	neighbours of u	relabelled neighbours of u	neighbours of $f(u)$
1	a	2	h	h
2	h	6,8 and 9	b, f, and g	b, f, and g
3	i	6,7 and 8	$\mathrm{~b}, j$ and f	$\mathrm{~b}, j$ and f
4	d	5,6 and 8	c, b and f	c, b and f
5	c	4	d	d
6	b	2,3 and 4	h, i and d	h, i and d
7	j	3,9 and 10	i, g and e	i, g and e
8	f	2,3 and 4	h, i and d	h, i and d
9	g	2 and 7	h and j	h and j
10	e	4 and 7	d and j	d and j

Now notice the last two columns of the chart above show that if u and v are adjacent vertices in G, then $f(u)$ and $f(v)$ are adjacent in Q since they match up exactly. Thus $f: V(G) \rightarrow V(Q)$ fulfills Criterion \#1 of Graph Isomorphisms. Now looking at our inputoutput table we can see that each vertex in Q appears exactly once- this immediately tells us that $f: V(G) \rightarrow V(Q)$ fulfills Criterion $\# 2$ and \#3 of Graph Isomorphisms! Therefore
f fulfills Criteria 1, 2 and 3 from the lesson and so f is an isomorphism.

8. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why: | v | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $f(v)$ | b | a | f | i | c | | | | |

Solution: To check that f is an isomorphism it suffices to show that f fulfills Criteria 1,2 and 3 from the lesson. We'll first check that if u and v are adjacent vertices in G, then $f(u)$ and $f(v)$ are adjacent in Q. We'll do this by listing out the neighbours for each vertex u in G and seeing if they match up with the neighbours of $f(u)$ in Q :

u	$f(u)$	neighbours of u	relabelled neighbours of u	neighbours of $f(u)$
1	b	2	a	h

We can stop here since we've already found a problem with f. we know that $f(1)=b$ and since 2 is the neighbour of 1 in G we need $f(2)=a$ to be a neighbour to $f(1)=b$ in Q , but we know that a and b are not neighbours in Q and so f fail Criterion \#1 of Graph Isomorphisms, telling us that f is not an isomorphism.
9. Are the following two graphs G and Q isomorphic? If yes provide an isomorphism, if not then state why.

Solution: Yes, the graphs G and Q are isomorphic! Consider the isomorphism $f: V(G) \rightarrow V(Q)$ given in the following input-output table;

u	1	2	3	4	5	6	7
$f(u)$	e	a	c	b	g	d	f

10. * The following two graphs G and Q not isomorphic. With one change (adding/removing on edge or one vertex) how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.
G

Solution: The change is to add an edge between vertices 1 and 3 in G. Then the function $f: V(G) \rightarrow V(Q)$ is an isomorphism, where f is given by: the following input-output table;

u	1	2	3	4	5
$f(u)$	e	a	b	d	c

11. * The following two graphs G and Q not isomorphic. With one change (adding/removing on edge or one vertex) how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

Solution: The change is to remove vertex 7 from G. Then the function $f: V(G) \rightarrow V(Q)$ is an isomorphism, where f is given by: the following input-output table;

u	1	2	3	4	5	6	8
$f(u)$	a	e	g	c	f	d	b

12. ${ }^{* * *}$ Below are the graphs P_{2}, P_{3}, and P_{4} from the family of Polygon Graphs, the polygon graph P_{n} is simply the regular polygon with n sides (P_{3} is a triangle, P_{4} is a rectangle, P_{5} is a pentagon etc):

(a) Draw and label the graphs P_{5}, P_{6}, and P_{7}.
(b) We define the complement of a graph G as \bar{G} to be a graph with the same vertex set as G, but has an edge set in which any edge that is not in G is an edge of \bar{G}. Below are the graphs of \bar{P}_{2}, \bar{P}_{3}, and \bar{P}_{4}. Draw and label the graphs of \bar{P}_{5}, \bar{P}_{6}, and \bar{P}_{7}.

(c) Which of $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7} are isomorphic to their complement, state which one(s) are isomorphic and provide and isomorphism.
(d) Besides the isomorphic graph (s) you found in part c is there any other graph in the Polygon Graph family which will be isomorphic to its complement? Explain your reasoning.

Solution:

(a)

(c) Only P_{5} is isomorphic to its complement- the isomorphism is as follows:

u	1	2	3	4	5
$f(u)$	1	3	5	2	4

(d) Only P_{5} is isomorphic to its complement, notice that in each graph P_{n} all vertices have degree equal to 2 , so for P_{n} to be isomorphic to its complement we require that
all vertices in \bar{P}_{n} also have degree equal to 2 . If all vertices in \bar{P}_{n} have degree equal to 2 then this means that for a given vertex u in P_{n}, u is not adjacent to exactly two vertices, and we also know that all vertices in P_{n} have degree equal to 2 so in P_{n} there are two vertices adjacent to u, two vertices not adjacent to u and u its self, this tells us that P_{n} has exactly 5 vertices. Therefore only P_{5} is isomorphic to its complement.

